module Numeric(fromRat, showSigned, showIntAtBase, showInt, showOct, showHex, readSigned, readInt, readDec, readOct, readHex, floatToDigits, showEFloat, showFFloat, showGFloat, showFloat, readFloat, lexDigits) where import Data.Word import Prelude.CType ( isDigit, isOctDigit, isHexDigit , digitToInt, intToDigit ) import Data.Ratio ( (%), numerator, denominator ) --import Array ( (!), Array, array ) import Prelude.Text import Jhc.Text.Read -- This converts a rational to a floating. This should be used in the -- Fractional instances of Float and Double. fromRat :: (RealFloat a) => Rational -> a fromRat = error "fromRat not implemented yet" {- fromRat :: (RealFloat a) => Rational -> a fromRat x = if x == 0 then encodeFloat 0 0 -- Handle exceptional cases else if x < 0 then - fromRat' (-x) -- first. else fromRat' x -- Conversion process: -- Scale the rational number by the RealFloat base until -- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat). -- Then round the rational to an Integer and encode it with the exponent -- that we got from the scaling. -- To speed up the scaling process we compute the log2 of the number to get -- a first guess of the exponent. fromRat' :: (RealFloat a) => Rational -> a fromRat' x = fromRat'' x undefined fromRat'' :: (RealFloat a) => Rational -> a -> a fromRat'' x _x = r where b = floatRadix r p = floatDigits r (minExp0, _) = floatRange r minExp = minExp0 - p -- the real minimum exponent xMin = toRational (expt b (p-1)) xMax = toRational (expt b p) p0 = (integerLogBase b (numerator x) - integerLogBase b (denominator x) - p) `max` minExp f = if p0 < 0 then 1 % expt b (-p0) else expt b p0 % 1 (x', p') = scaleRat (toRational b) minExp xMin xMax p0 (x / f) r = encodeFloat (round x') p' `asTypeOf` _x -- Scale x until xMin <= x < xMax, or p (the exponent) <= minExp. scaleRat :: Rational -> Int -> Rational -> Rational -> Int -> Rational -> (Rational, Int) scaleRat b minExp xMin xMax p x = if p <= minExp then (x, p) else if x >= xMax then scaleRat b minExp xMin xMax (p+1) (x/b) else if x < xMin then scaleRat b minExp xMin xMax (p-1) (x*b) else (x, p) -} -- Exponentiation with a cache for the most common numbers. minExpt = 0::Int maxExpt = 1100::Int expt :: Integer -> Int -> Integer expt base n = base^n {- expt base n = if base == 2 && n >= minExpt && n <= maxExpt then expts!n else base^n expts :: Array Int Integer expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]] -} -- Compute the (floor of the) log of i in base b. -- Simplest way would be just divide i by b until it's smaller then b, -- but that would be very slow! We are just slightly more clever. integerLogBase :: Integer -> Integer -> Int integerLogBase b i = if i < b then 0 else -- Try squaring the base first to cut down the number of divisions. let l = 2 * integerLogBase (b*b) i doDiv :: Integer -> Int -> Int doDiv i l = if i < b then l else doDiv (i `div` b) (l+1) in doDiv (i `div` (b^l)) l -- Misc utilities to show integers and floats {-# SPECIALIZE showSigned :: (Int -> ShowS) -> Int -> Int -> ShowS #-} {-# SPECIALIZE showSigned :: (Integer -> ShowS) -> Int -> Integer -> ShowS #-} showSigned :: Real a => (a -> ShowS) -> Int -> a -> ShowS showSigned showPos p x | x < 0 = showParen (p > 6) (showChar '-' . showPos (negate x)) | otherwise = showPos x {-# INLINE showInt #-} -- showInt, showOct, showHex are used for positive numbers only showInt, showOct, showHex :: Integral a => a -> ShowS showOct = showIntAtBase 8 intToDigit showInt = showIntAtBase 10 intToDigit showHex = showIntAtBase 16 intToDigit {-# SPECIALIZE showIntAtBase :: Word -> (Int -> Char) -> Word -> ShowS #-} {-# SPECIALIZE showIntAtBase :: WordMax -> (Int -> Char) -> WordMax -> ShowS #-} showIntAtBase :: Integral a => a -- base -> (Int -> Char) -- digit to char -> a -- number to show -> ShowS showIntAtBase base intToDig n rest | n < 0 = error $ "Numeric.showIntAtBase: can't show negative numbers " ++ show n | n' == 0 = rest' | otherwise = showIntAtBase base intToDig n' rest' where (n',d) = quotRem n base rest' = intToDig (fromIntegral d) : rest readSigned :: (Real a) => ReadS a -> ReadS a readSigned readPos = readParen False read' where read' r = read'' r ++ [(-x,t) | ("-",s) <- lex r, (x,t) <- read'' s] read'' r = [(n,s) | (str,s) <- lex r, (n,"") <- readPos str] -- readInt reads a string of digits using an arbitrary base. -- Leading minus signs must be handled elsewhere. {-# SPECIALIZE readInt :: Int -> (Char -> Bool) -> (Char -> Int) -> ReadS Int #-} {-# SPECIALIZE readInt :: Integer -> (Char -> Bool) -> (Char -> Int) -> ReadS Integer #-} readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a readInt radix isDig digToInt s = [(foldl1 (\n d -> n * radix + d) (map (fromIntegral . digToInt) ds), r) | (ds,r) <- nonnull isDig s ] -- Unsigned readers for various bases readDec, readOct, readHex :: (Integral a) => ReadS a readDec = readInt 10 isDigit digitToInt readOct = readInt 8 isOctDigit digitToInt readHex = readInt 16 isHexDigit digitToInt showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS showFloat :: (RealFloat a) => a -> ShowS showEFloat d x = showString (formatRealFloat FFExponent d x) showFFloat d x = showString (formatRealFloat FFFixed d x) showGFloat d x = showString (formatRealFloat FFGeneric d x) showFloat = showGFloat Nothing -- These are the format types. This type is not exported. data FFFormat = FFExponent | FFFixed | FFGeneric formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String formatRealFloat fmt decs x = s where base = 10 s = if isNaN x then "NaN" else if isInfinite x then if x < 0 then "-Infinity" else "Infinity" else if x < 0 || isNegativeZero x then '-' : doFmt fmt (floatToDigits (toInteger base) (-x)) else doFmt fmt (floatToDigits (toInteger base) x) doFmt fmt (is, e) = let ds = map intToDigit is in case fmt of FFGeneric -> doFmt (if e < 0 || e > 7 then FFExponent else FFFixed) (is, e) FFExponent -> case decs of Nothing -> case ds of [] -> "0.0e0" [d] -> d : ".0e" ++ show (e-1) d:ds -> d : '.' : ds ++ 'e':show (e-1) Just dec -> let dec' = max dec 1 in case is of [] -> '0':'.':take dec' (repeat '0') ++ "e0" _ -> let (ei, is') = roundTo base (dec'+1) is d:ds = map intToDigit (if ei > 0 then init is' else is') in d:'.':ds ++ "e" ++ show (e-1+ei) FFFixed -> case decs of Nothing -- Always prints a decimal point | e > 0 -> take e (ds ++ repeat '0') ++ '.' : mk0 (drop e ds) | otherwise -> "0." ++ mk0 (replicate (-e) '0' ++ ds) Just dec -> -- Print decimal point iff dec > 0 let dec' = max dec 0 in if e >= 0 then let (ei, is') = roundTo base (dec' + e) is (ls, rs) = splitAt (e+ei) (map intToDigit is') in mk0 ls ++ mkdot0 rs else let (ei, is') = roundTo base dec' (replicate (-e) 0 ++ is) d : ds = map intToDigit (if ei > 0 then is' else 0:is') in d : mkdot0 ds where mk0 "" = "0" -- Print 0.34, not .34 mk0 s = s mkdot0 "" = "" -- Print 34, not 34. mkdot0 s = '.' : s -- when the format specifies no -- digits after the decimal point roundTo :: Int -> Int -> [Int] -> (Int, [Int]) roundTo base d is | base `seq` d `seq` True = case f d is of (0, is) -> (0, is) (1, is) -> (1, 1 : is) where b2 = base `div` 2 f n [] = (0, replicate n 0) f 0 (i:_) = (if i >= b2 then 1 else 0, []) f d (i:is) = let (c, ds) = f (d-1) is i' = c + i in if i' == base then (1, 0:ds) else (0, i':ds) -- -- Based on "Printing Floating-Point Numbers Quickly and Accurately" -- by R.G. Burger and R. K. Dybvig, in PLDI 96. -- The version here uses a much slower logarithm estimator. -- It should be improved. -- This function returns a non-empty list of digits (Ints in [0..base-1]) -- and an exponent. In general, if -- floatToDigits r = ([a, b, ... z], e) -- then -- r = 0.ab..z * base^e -- floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int) floatToDigits _ 0 = ([], 0) floatToDigits base x = let (f0, e0) = decodeFloat x (minExp0, _) = floatRange x p = floatDigits x b = floatRadix x minExp = minExp0 - p -- the real minimum exponent -- Haskell requires that f be adjusted so denormalized numbers -- will have an impossibly low exponent. Adjust for this. f :: Integer e :: Int (f, e) = let n = minExp - e0 in if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0) (r, s, mUp, mDn) = if e >= 0 then let be = b^e in if f == b^(p-1) then (f*be*b*2, 2*b, be*b, b) else (f*be*2, 2, be, be) else if e > minExp && f == b^(p-1) then (f*b*2, b^(-e+1)*2, b, 1) else (f*2, b^(-e)*2, 1, 1) k = let k0 = if b==2 && base==10 then -- logBase 10 2 is slightly bigger than 3/10 so -- the following will err on the low side. Ignoring -- the fraction will make it err even more. -- Haskell promises that p-1 <= logBase b f < p. (p - 1 + e0) * 3 `div` 10 else ceiling ((log ((fromInteger (f+1))::Double) + fromIntegral e * log (fromInteger b)) / log (fromInteger base)) fixup n = if n >= 0 then if r + mUp <= expt base n * s then n else fixup (n+1) else if expt base (-n) * (r + mUp) <= s then n else fixup (n+1) in fixup (k0::Int) gen ds rn sN mUpN mDnN = let (dn, rn') = (rn * base) `divMod` sN mUpN' = mUpN * base mDnN' = mDnN * base in case (rn' < mDnN', rn' + mUpN' > sN) of (True, False) -> dn : ds (False, True) -> dn+1 : ds (True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN' rds = if k >= 0 then gen [] r (s * expt base k) mUp mDn else let bk = expt base (-k) in gen [] (r * bk) s (mUp * bk) (mDn * bk) in (map fromIntegral (reverse rds), k) -- This floating point reader uses a less restrictive syntax for floating -- point than the Haskell lexer. The `.' is optional. readFloat :: (RealFrac a) => ReadS a readFloat r = [(fromRational ((n%1)*10^^(k-d)),t) | (n,d,s) <- readFix r, (k,t) <- readExp s] ++ [ (0/0, t) | ("NaN",t) <- lex r] ++ [ (1/0, t) | ("Infinity",t) <- lex r] where readFix r = [(read (ds++ds'), length ds', t) | (ds,d) <- lexDigits r, (ds',t) <- lexFrac d ] lexFrac ('.':ds) = lexDigits ds lexFrac s = [("",s)] readExp (e:s) | e `elem` "eE" = readExp' s readExp s = [(0,s)] readExp' ('-':s) = [(-k,t) | (k,t) <- readDec s] readExp' ('+':s) = readDec s readExp' s = readDec s